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NOTAT ION

ai Polynomial coefficients

C Constanit of integration

C Prismatic coefficient of nose or tailp

D Diameter or thiLIkness of body

D[x] Polynomial associated with d

d General adjustable parameter at end
f "Quadratic" polynomial

g "Square root" polynomial
K0  Polynomial associated with h0

Xl[X] Polynomial associated with kI

k Curvature

k0 Cuvature at x = 0

k Rate of change of curvature at x I
L Length of nose or tail
it Arc length

n Degree of polynomial

P Polynomialn

Q[x] Polynomial Ecr restraining conditions
R[x] Polynomial associated with r

r End radius

S[x] Polynomial associated with s

s End slope
X Axial coordinate

x Normalized axial coordinate

Y Radius or offset

y Normalized radius or offset

z General function of offs't of least-scuares fitted body
zI Generai function of off3et of body to be fitted

a Unspecified constant

a. Adjustable conditions1

a Unspecified constant

iv
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Conditions of restraintJ

y Unspecified constant

I Single differentiation with respect to x

II Double differentiation with respect to x

III Triple differentiation with respect to x

IV Quadruple differentiation with respect to x
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ABSTRACT

Two-parameter geometric systems are developed for noses
and tails attached to parallel middle bodies in terms of inde-
pendent polynomials. A new parameter is introduced--the rate
of change of curvature with arc length at the juncture with
the parallel middle body. "Quadratic" polynomials are con-
sidered for bodies of revolution and "square root" polynomials
for symmetric two-dimensional bodies. Permissible ranges of
the two adjustable parameters are obtained for selected
geometrical constraints such as the presence of inflection
points.

ADMINISTRATIVE INFORMATION

The work described in this report was sponsored by the Naval

Ordnance Systems Command (Code 035B) and was funded under UR 123-01-03.

INTRODUCTION

The geometrical characteristics of streamlined bodies of revolution

and symmetrical two-dimensional bodies heve been developed in a previous
' 1 Sreport. There, a body is divided into a forebody and an afterbody at the

maximum section, and the curvature at the 'unction is one of two adjustable

parameters controlling the shape. These forebodies or afterbodies may also

be attached to parallel middle bodies. in this case, it is considered more

desirable in hydrodynamic applications if the junction curvature is made

zero tc match that of the parallel middle body in order to avoid discon-

tinuities in curvature. The use of a junction curvature of zeio, however,

eliminates an adjustable parameter and leaves only one adjustable parameter

for the polynomials involved.

It is the purpose of this report to reAurn to a two-parameter system

for Zorebodies or noses and afterbodies or tails to be attached to parallel

middle bodies in order to have a more extensive group of shapes. A new

adjustable parameter has been introduced, namely, the rate of change of

iGranville, P. S., "Geometrical Characteristics of Streamlined Shapes,"
NSRDC Report 2962 (Mar 1969); Journal of Ship Research, Vol. 13, No. 4
(Dec 1969).
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curvature at the junction with the parallel middle body. The requirement

of zero curvature here becomes an additional restraint.

The method developed in Reference 1 is followed closely. The so-

called "quadratic" and "square root" polynomials are used in a system of

independent polynomials controlled by the two adjustable parameters. The

analytical description of the polynomials is obtained by a factorial method

where feasible. Rounded, pointed, and cusped ends are considered. Pec-

missibie ranges of the adjustable par;uneters are considered in terms of

geometric criteria such as the presence of inflection points. Regions of

well-behaved shapes are delimited by boundary curves obtained by an

envelope analysis. The least squares fit of graphically or analytically

delineated shapes is also considered. The fullness of the shapes is ob-

tained in terms of a prismatic coefficient.

GENERAL ANALYSIS

The shapes of families of noses or tails of bodies of revolution

and of two-dimensional symmetrical bodies may be stated functionally as

i=, 2,...
Y = f [x; ac, (] (1)

"~ j =1, 2,

where Y is the radius of the body of revolution or the offset of the
two dimensional bo-dy,

X is the axial distance of the body measured from the end of the
nese or tail,

a are the parameters to be varied which specify the family, and

•. are the boundary conditions or restraints.J
The analytical analysis is more useful in a normalized coordinate

system [x, yl: y = 0 at x = 0, and y = 1 at x = 1.

If D is the diameter or maximum thickness of the parallel middle

body, and L is the length of the nose or tail, then the normalized

coordinates become

2Y
D (2)

2



and

xZ (3)

as shown in Figure 1.

To achieve "hydrodynamic continuity" as contrasted with mathematical

continuity, it is considered necessary that the position, slope, and curva-

ture match at the junction of the nose or tail with the parallel middle

body. In this case the slope and curvature at the junction are zero.

In normalized coordinates the contonr is given by

i = I1 2,y = f Ix; Cl, IB] (4)
=, 2, ...

where .i and 8.are now defined in normalized coordinates. In this study two

adjustable parameters aI and a2 are to be considered for simplicity of

analysis.

If a functional form like that of a polynomial is selected as

.i=n n
y E 0 a nx = P nx] 5

n= n

a resolution into linearly independent polynomials may be obtained like that

of linearly independent vectors multiplied by scalars, such as

y =E f[ai] P n,i [x] + Z f [0.] P n,j x] (6)
i n

or since the 8. are constant

y = f [[i] P [x] +Q[x] (7)
ini

whore

Q[x] Z f (a] Pn,i [x] (8)

n -
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This permits the effect of the controllable parameters ac. to be obtained1
independently of each other.

The independent polynomials may be determined by substituting, one

by one, conditions aci and a. into the general polynomial, by evaluating

the polynomial coefficients by a solution of the resulting simultaneous

algebraic equations, and then by a gathering of terms corresponding to

each a.. Another method is to use the factorial properties of polynomials

in considering conditions ai and B., which is illustrated in the specific

cases to follow.

Not all cGmbinations of ai give desirable shapes. It will be

of value to analyze the possible limitations in terms of simple criteria:

I. Zero condition--y = 0 for 0 < x < 1; negative values of y would

be meaningless.

2. Unity condition--y = 1 for 0 < x < 1; bulges above y 1 are

undesirable.

3. Maximum or minimum condition--dy/dx = 0 for 0 < x < 1; no other

maximum or minimum is to be permitted than at x i.

4. Inflection-point condition--d 2y/dx2 = 0 for 0 < x < 1; inflection

points are undesirable on noses.

For example, the condition for zero values of y

y [x; a 1 , a 2] = 0 0 <x < 1 (9)

may be studied as follows.

If ai and a 2 are now considered as variables, and x is considtred

as an adjustable parameter, a line may be defined for each x-value. An

envelope to these lines may be developed which represents the boundary

of regions for values of ai and a2 with values of y = 0 for different

values of x. The envelope condition is given by

-Z-x y [x; aI, c2] = 0 (10)

I



From Equations (9) and (10)

°• "f x (11)

a 2 f2 [] (12)

A plot of a1 against a2 for the range of values of x, 0 < x < 1 gives the

envelope curve. Other conditions may be handled in a similar way.

For the shapes to be considered, a common adjustab.le parameter to be

used is the rate of change of curvature with arc length at the junction of

the nose or tail with the parallel middle body at x = 1, given by

k Vd--') xC(13)
l~d97 = 1

where k is curvature, and k is arc length.

In general

dx 

(

and

dk +[ ( ),]- (( y [1 ( dy
d9, d ~ 3/ L dx jJdx dxj~ L2!/

(15)

For

d2
'dx dx 2

and then

dx 1

6
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"QUADRATIC" POLYNOMIAL REPRESENTATION

GENERAL

The functional relation

2 n=N
y = E a x (17)

n=O

is called the "quadratic" polynomial for sant of a better name. It is very

suitable for describing bodies of revolution for which volume is an impor-

tant consideration, since it represents the axial distribution of the

cross-sectional area. It has the additional advantage of providing a means

of accommodating the analytical description of bodies with rounded ends,

something the ordinary polynomial cannot do because of the requirement of

infinite slope at x = 0. In addition to bodies with rounded ends, the

"quadratic" polynomial may also be applied to bodies with pointed ends and

cusped ends.

Although any number of adjustable parameters ai may be used, the

analysis here is to be limited to two. This is sufficiently general for

describing a wide variety of geometrical shapes.

ROUNDED ENDS

The adjustable parameters ai to be considered at each end of the

curve are

a1 : r = radius of curvature at x =0

r (18)

x=0

7



a 2 : k' = rate of change of curvature at x = 1

- 'd~y
1I dx 3

The bouvndary conditions 8. are

8: x 0, y= 0

B2: x = 1, y = 1

(20)

83: x = 1, ZE = 0

84: x = ,-- d y - 0
dx 2

Since there are six conditions in all, n = 5.

The .i and 8. are substituted into the polynomial. Differentiating

Equation (17) successively with respect to y gives

a~2 a~3 a4) dx
2y = (a1 + 2 a2x + 3 a x+ 4 a x 5 5x+ (21)

and

2= (a + 2 a2 x + 3 a3 x 2 + 4 a x3 + 5 a x4 d 2x
1 2 3 4 5 dy 2

(22)

+ (2 a2 + 6 a3 x + 12 a4 x2 + 20 a x3)dxy2

Since a1 f 0, dx/dy = 0 at x = 0. This automatically provides a rounded

end. Then

a1 : a, = 2r

8
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The other substitutions yield

a 2: 6 a3 + 24 a4 + 60 aS = 2 1

1I: a0 = 0

2: a0 + a1 + a2 + a3 + a4 + a5 = 1 (23)

a: + 2 a2 + 3 a3 + 4 a4 + Sa - 0

4: 2 a 2 + 6 a3 + 12 a 4 + 20 a 5 = 0

The solution of Equations (23) by determinants shows that the a's
2.

are linear functions of r and'k Hence y is also a linear function of

r and k1 and may be written as

) =r R[x] + k1 K1 [x] + Q[x] (24)

where R[x], K1[x], and Q[x] are also polynomials of the fifth degree in x.

It is possible to determine R[x], K1 [x], and Q[x] by first solving for the

a's from the simultaneous equations and then regrouping terms applicabJe to

R[x], Kl[x], and Q[x]. Another method is to use polynomials as follows.

It is evident that the relations for a. and B. correspond to

d 2
a1: -dy [0] 2r

d 2a 2 : 7 y [1] =2 k1

21: ,2 [01 = 0

2

2: y 2[1] =1

9



d 2

64: d2y 21 = 0 (25)
dx

Since the foregoing apply identically to r and k because of
linearity, it is further evident that

a1 : R (0] 2, l'(.Io] = QI o] = 0

a2 : K1 I21] 2, R III[l = Q III(] = 0

81: RIO]= K1 [OJ = Q[0] = 0

82: Q[l] = 1, R[l] = KI 1l] = 0 (26)

83: RI[1] [11I1] = QI1(] = 0

8 R 1[l -~II I
a4: RII 2l 2 = QII[1] = 0

where R = dR/dx, RII = d 2R/dx 2 etc.

Evaluation of R[x]

Since R(O] = R[l] = R [11 = RI1(1] = R II[1] = 0, and R[x] is a
polynomial of the fifth degree, R[x] may be written as

R[x] =a x (x - 14 (27)

Since RI[0] = 2, a = 2.

Then

R[x] 2 x (x -) 4  
(28)

10



Evaluation of Kl[x]

Since K,[O] KII[O] Ki[l I[1]R 0, Kl[x] may be

written factorially as

Kl[X] = 8 x2 (x - 1) (29)

Since KII[1] = 2, 8 = 1/3, then

K1[x] = x (x - I)3 (30)

Evaluation of Q[x]

Since Q [0] = QI[1] = Q [1] = Q 11[1] = 0, Q I[xl may be written

factorially as

Q [x] = y x (x - 1)3 (31)

Then integrating produces

5 34 2 \
Q[x] = - 3x + -3 )+ C (32)

With Q[0] =0 and Q[] = 1, C= 0, and y . 20. Then

Qx] =-x 2 (4 x3 -15 x2 + 20 x -10) =1- (x -1) 4 (4 x +1)

(33)

For Rounded Ends in Summary

2~ ~
y r R[x] + kI Kl[x] + Q~x] (24)

with

R[x] =2 x (x- 1)4 (28)

11"



1 2 3S=T Cx - 1) (30)

4
Q[xj = 1- (x - 1) (4 x + 1) (33)

PERMISSIBLE RANGES OF PARAMETERS r AND k

Zero Condition

y2 a fx; r, k]= 0 0 <_x <.1 (34)

The envelope in r and k with x as the variable parameter is given by

II
f f 0 (35)

The two envelope conditions, Equations (34) and (35), provide two

simultaneous equations in r and which are solved by the Cramer rule to

give r[x] and kl[x]:

3 x2
r x (3 -x 10 x + 0) (36)

2 (x- 1)4

"•l=3 (x 3 _ 5 x 2 + i0 x - i0) (7

(x - 1) 3

The envelope curve is shown in Figure 2. Since the tangent lines represent-

ing values of r and kI for y = 0 are outside the envelope curve, th. inside

region contains values of r and k which do not have values of y = 0 (except

at x = 0). 4
Unity Condition

The unity condition is that

y2 =f[x; r, kl] =1 0_< X 1< (38)

.2K!
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The envelope in r and k with x as the variable parameter is given by

ax-. (f - 1) = 0 (39)

The two envelope conditions, Equations (38) and (39), provide two

simultaneous equations in r and kl, which are solved by the Cramer rule to

give

r 3x+ 2 (40)

3 (x- 1)2
=i 2 (41)

1

The envelope curve is shown in Figure 2. Desirable values of r and kV

that is, without bulges, are on the "inside curved" side of the envelope

curve.

Ma-ir-um or Minimum Conditiou

The maximum or minimum condition is given by

-d= f = 0 (42)

The envelope curve in r and with x as the variable parameter is given

by

f = 0 (43)

The envelope curve is shown in Figure 2. A better understanding of

the envelope curve is developed in Figure 3. Each point on the envelope

curve represents a tangent, giving the locus of values of r and which

provide a maximum or minimum at each value of x other than the maximum at

x = 1 which prevails at all times. Two such loci are represented. Their

point of intersection provides a value of r and kl, representing madima or

mii:ima at two values oF x. Evidently from any point in the region outside

the envelope curve, two tangenms may be drawn to the envelcpe curve. Thus

13
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Figure 2 - "Quadratic" Polynomial: Rounded End, Permissible Range

of Parameters r and k1

'><'VALUES OF r AhD k1 HAVING MAX OR MIN

x 0.6 AND x 0.25

, REGION OF TWO AX ORMON 0A O
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____ 
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____
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' a ONE MAX OR MIN
0. (OTHER THAN AT x 1)

110.25

REGION OF N6 MAX OR HMI 0.5,X

(OTHER THAN AT x - 1)

0.1

I 0.05

0 10 20 30 40 50
k I

Figure 3 - "Quadratic" Polynomial: Rounded End, Delineation of Regions

by Envelope Curve for Maximum or Minimum Condition
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the region outside the envelope curve represents values of r and kl, giving

two maxiwa or mninima. The region inside the envelope curve provides no

maximum or minimum. Finally there is only one maximum or minimum specified

by the envelope curve.

The two envelope conditions, Equations (42) and (43), provide two

simultaneous equations in r and kl, which are solved by the Cramer rule

to give r[x] and kI[xj as

215 x2
r 2152 (44)

10 x- S x + 1

0 (x- i) 2

k 1 10 x - 5 x + 1

Inflection-Point Condition

The inflection-point condition is given by

2
dY= 0

dx

For y2 = f[x]

2 f f f1 0 (46)

and the envelope condition

f 0 (47)

The two conditions provide two simultancous equations in r and in terms

of x. Since the boundary condition leads to a quadratic relation, the Cramer

rule does not apply. For specified values of x the two simultaneous equa-

tions may be numerically solved by direct substitution of one equation

into the other. The results are shown in Figures 2 and 4. The results for

the rounded end are summarized in Table 1.

15



TWTINFLECTION POINTS

3, -Op .00. TWO INFLECTIM POIINTS

"TAL NO INFLOCTION POINTS

Polgoura E quation:Plyoia:RonedEd

yor E tion:0 .QO

R[xJ -2 x(x - )

0[xJ-.-x2 (x-

Q~x]-'l-(x-.1)4(4x,1)

Envelope Eq uataons:

Zero Condft i on:

TB2L• 1 - 3R ("D- Sx2 +FlOx+lO)

r 2 '(, - I ), 1 .- )

nity Col Eu tion:

, 3 - *2 x 1 3 (x -)2

15 x2 ;x 1)2

IZ'immo r ii Condition:

10 x2 -5 x +l 10) 2 2 x 5 .+ 1

Inflection-Point Condition: Nierical cllatlon

16r - 10 X2 IS X2 ;i• , i i ,lI ' ! I ". 30 I (x - 1-



POINTED ENDS

The adjustable parameters a. are1

ai: s slope at x 0

S 0 d (48)
dx =0

a2  k 1 = rate of change of curvature at x = 1

/ 3 
(49)

= dx -1

The boundary conditions 8. are the same as those given in Equation

(20)

81: x =O, y =0

82: x =1, y =1

k (50)
83: x = 1, = 0 50

dx

2
84. dx 2

Since the "quadratic" polynomial as previously used give.- infin.te slope at

x = 0, an additional condition, indicated as follows, is necessary to give

controlled slopes at x = 0. Hence, the degree of the polynomial becomes

six.

For a1

n-
dy a + 2 a2 x + .. a + n x 1

dx= 2y ( 1

17 3

r.
' " :-•. .,. T' • -II | |III I|I



Nw-~ -- W- -~r

Sincey= 0 at x = 0, dy/dx+•, unless a 0. For a =0 , dy/dx is
A

indeterminate at x = 0. Then by the L'Hopital rule

dy /dys a2
L S=s= (52)X . d dx =0 s

or

s2 a2

a then requires that

a..=O0
3.

(53)
2

a2 =s

The other substitutions yield

a 2: 6 a3 + 24 a4 + 60 a5 + 120 a6 = 2 k1

a1 a: 0 = 0

82: a0 + a1 + a2 + a3 + a4 + a5 + a6 =1 (54)

$3: a1 + 2 a2 + 3 a3 + 4 a4 + 5a5 + 6a 6 =0

84: 2 a2 + 6 a3 + 12 a4 + 20 a5 + 30 a6 = 0

y is then a linear function of s2 and k1 or

2 2 ~ ~x(y = s s[x] + k 1 l[x] + QJx] (ss)

The analysis proceeds as before, and the results are shown in

Table 2 and Figures 5 and 6.

18



TABLE 2 - SUMMARY OF "QUADRATIC" POLYNOMIALS FOR POINTED END

Polynomial Equation:

y2 a s2 SexJ + k K1i[x] + Q[x 0 < x < 1

where
I4

S[x]- x 2 (x- 1)4

il[X] =_I-x3 (x- 1)3

Q[xJ = 1 - (x - 1)4 (10 x2 + 4 x + 1)

Envelope Equations:

Zero Condi tion:

s2 . 3 x2 (2 x2 - 6 x + 5) = 6 (2x 3 - 9 x 2 + i x - 0)

(x - 1)4 (x - 1)3

Unity Condition:

s2 3 (2 x2 + 2 x + 1) 6 (x- 1)2 _(2 x+_l)

x2 ; 3

Maximum or Minimum Condition:

S 30x 22 30 x60 (x- 1)2

5x 4 x+ 1 5 x 4 x + 1

Inflection-Point Condition: Numerical calculation

19
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3 A'VAX OR MIN CONOITION

IN LECTION-POINT

0 20 40 60 80 100 120 140

Figure 5- "Quadratic" Polynomial: Pointed End,

Permissible Range of Parameters s and k

24 0

/do .-0\

2TWO INFLECTION POINTS

NO INFLECTION POINTS -. 1

121

ONE INFL ECTION POINT/

0 10 20 30 40 50 60 70

Figure 6 - "Quadratic" Polynomial: Pointed End,

Inflection-Point Condition
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In analyzing the inflection-point condition, a problem arises for
A

x = 0, where an indeterminate condition exists. By the L' lopital rule

d2y -24 s 2 - 2 k + 120

1 (56)
(d x2 =0 6s

The boundary curve at x = 0 is then

- 12 s -k + 60 =0 (57)

CUSPED ENDS

The adjustable parameters aci are

ai : k° =curvature at x = 0

k d2 
(58)

' k° \dx /x=0

a2: kl = rate of change of curvature at x = 1

= I:x(5O9)=

dx3

The boundary conditions 8. are the same as those of Equation (20),

except for the additional condition of zero slope at x =0.

x1 X 0, y =0

Y3: x= 1, y 1

21
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4: x d •• 0

85: x=I, .- = 0  (60)
dx

As will be shown the cusped end requires two additional conditions which

makes n = 8.

For

01: aO = 0

For

dy a1 + 2 a2 x + ... + n a xn - 1

d2 x -- 1/2 (61)

2 (a 1 x + ... + an x)

For

dx = 0 at x = 0, a 1 = 0

Then

dy 2 a2 + 3 a3 x + ... + na 2 (62)
dx n-2

2 (a2 + a3 x + ... + an x

(L)xd -a2 12(63)

For 4

(0 0, a2 =0 (64)

22



For

d2y n 2 2(Y2

dy 6 a x + ... + n(n - 1) . n

dx-n3 2 y (65)

Then

; 2
d2 y 2[6a 3 +. ".n(n-l)anxn-3 ](a 3+ ...+an x n-3)-( 3a 3 +..."+nan xn- 2  2

dx 2  / 1/3", n-8/3)3/2

4~ (a .3.+a x /
(66)

22
Equation (66) gives d ydx ÷ at x = 0.

To prevent this, let a 3 = 0.

Now

2n-4 n4 n- 32d2 y 2[12a 4 +...+n(n-l)anx n (a, 4+...+a nxn 4 a a 4+...+nanx I

dx 2  4(a 4 +...+n x n-~
4  3/2

(67)

At x =0

= 2 a 1/2 (68)
dx

2

4 a 4 = k0
2  (69)

The other substitutions yield

a2: 6 a3 + ... + n (n -1) (n -2) an =2 k

83: a 4 + "'" + an = 1

23
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4: 4 a 4 + .. + n a n 0

12 a4 + .. + n (n- 1) an =0 (70)

2 .2
y is then a linear function of k2 and k1

y2 =k 0 2 K x]k + K[x] + Q[x] (71)

The analysis proceeds as before, and the results are shown in Table 3

and Figures 7 and 8.

"SQUARE ROOT" POLYNOMIAL REPRESENTATION

GENERAL

The functional relation

1/2 n=n
y = a1/2 E a n (72)

n=0

is to be called the "square root" polynomial for want of a better name.

It is suitable for describing two-dimensional shapes with rounded ends,

since the square-root term gives infinite slope at x = 0. Of course,

without the square-root term an ordinary polynomial remains.

The same analysis procedure used for the quadratic polynomial is to

be applied where possible to the square-root polynomial for the same cases:

rounded ends, pointed ends, and cusped ends.

ROUNDED ENDS

The adjustable parameters a. are the same as those for the quadratic
polynomial

a r - radius of curvature at x = 0
1*1

Sd~x •(73)
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TABLE 3 - SUMMARY OF "QUADRATIC" POLYNOMIALS FOR CUSPED END

Pc iynomial Equation:

y2 . k02 Ko0 [x] + Kl[X + Q[xJ O< x < 1

where

Ko[x] = _ x4 (x I)4

15 3

S[xJ =I x, (x - I)

Q~x] = x5 (35 x3  120 x2 + 140 x- 56)

Envelope Equations:

Zero Condition:

k2 4x2 (15 x2 -40 x + 28) 12 (5 x3 - 20 x2 + 28 x- 14)
o (x- 1)4  1 (x- 1)3

Unity Condition:

kIo2 = 4 (15 x4 + 20 x3 + 18 x2 + 12 x + 5)
x4

/ 12 (x- 1)2 (5 x3 + 5 x2 + 3 x + 1) d
xs 5

Maximum or Minimum Condition:

k 2 = 840 x2  = 840 (x- 1) 2

14x 2 - 16 x+ 5 1 14 x2  16 x + 5

Inflection-Point Condition: Numerical calculation £
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a2: ki = rate of change of curvature at x 1

~ d3 (74)

x= 1

The boundary conditions 0. are the same as those for the quadratic

polynomial

I: x 1, y = 0

' Ba2: x = , y=1

(75)

x= 1 dy _
3 'dx

2
x= , d y 0

4 dx 2

Since there are six conditions in all, n = 4.

The a i and 8. are substituted into the polynomial. For a1:

Differentiating Equation (72) with respect to y gives

1 = (i-a,/2 x-i 2 .aI + ... na1 l xn )dx (76)

or

dx = 1/2
dy 1 1/2 2n-l1/2 (77)

-al .a x + n a x

At x = 0, dx/dy = 0 which ensures a rounded end. Differentiating Equation

(76) with respect to y gives

1 (•al/2 + "" + n an /2  a 2 + ... + n a 2n 1/2

2 - 2n- 1/2d x a,/ . n (n - )x

4ay2x(78)
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At x = 0, r 1/2 a 2
1 / 2

all 2 =vW2 (79) 1

or

3
2 : Tall 2 + 6 a + 24 a4 =

$1 a = 0

62 a1/2 + a 1 + a2 + a3 + a4 = 1 (80)

1
: -L al+/a, + 2 a + .3a + 4 = 03 1 / 2 3 4

a 2 a + 6 a -: 12 a =0

The presence of the square-root term prevents the use of the

factorial analysis.

The solution as simultaneous equations in the a's produces

y = r2-r R[x] + kI K1 [X] + Q[x] (81)

with

R[x] = x1/ 2 +-x -x3  21 x2 + 35 x - 35) (82)

KI[X] =- (x - 1) (83)

Q[x] = 1 - (x- 1) 4 (84).

The permissible ranges of parameters 2 r and k1 are studied as

before, and the results are shown in Table 4 and Figures 9 and 10.
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TABLE 4 - SUMMARY OF "SQUARE ROOT" POLYNOMIALS FOR ROUNDED END

Polynomial Equation:

y /- rx RJx] + K1 [x) + Q[xJ 0 < x < 1

where

R[x] • i+ 6 (5 x3 21 x2 + 35 x- 35)

- 16

1C1(x] -•x (x - 1)3

Qox- 1 - (x- 1)4

Envelope Equations:

Zero Condition:

- 8 x 31 2 (x2  4 x + 6)
28 x- 4- x312 (3 x2 - 14 x + 35)

24 ( 7 x3 -20 x2 + 18 x- 4) - 3 x3 2 (x4 -10 X3 + 59 x2  112 x + 70)
1 (x - 1)2 (28 x - 4 - x3' 2 (3 x2 - 14 x + 35))

Unity Condition:

- 8 (x- l)4 x3/2

x [28 x - 4- x3/z (3 x2- 14 x + 35)]

"l 3 (x- 1) [56 x2 + 8 xx- x3/ 2 (x3 - 7 x2 + 35 x + 35))
x [28 x- 4- x 31 2 (3 x2  14 x + 35)]

Mximum or Minimum Conditior:

47 2 - 48 (x - 1)3 x3/2
28 x2 _1x+I X32 (18 x3 - 62 xZ+ 91 x - 35)28x - 17 x+ 1~x - 1x• x3  2

"6 (x - 1) [28 x - 4 - x3/ 2 (3 x2 
- 14 x + 35)A .4

28 x2 -17 x + I x3/ 2 (18 x 2 - 62 x2 + 91 x- 35)

Inflection-Point Condition:

&T 96 (x - 1)2 x5/2

14 x2 - 15 x + 3 + 2 x5/' (18 x - 40 x + 21)
x5/2 •

12 (x- 1) [7 x- 3 + x(38 x •4- 7)
1 14 x2 -15 x + 3 + 2 x5/ 2 (18 x -40 x + 21)
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6__

_________ _______ IXI". OR MIHIRIM _ ___

CONDITION

INFLECTION-1POINT -_ _ _ _

0 4 8 12 16 20 24 28 32

Figure 9 - "Square Root" Polynomial: Rounded End,

Permissible Range of Parameters r2 and k

4 TWO INFLECT 10% POINTS _"

0 .8 l o,. " •

, NO INFLECTION POINTS

OW MULCTION POINT
2. 1

_ _ _1-_ _ _ _ I ___

0 2 4 6 a 10 12 II 16 18 20

Figure 10 - "Square Root" Polynomial: Rounded End, Inflection-Point Condition
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POINTED ENDS

The ordinary polynomial is utilized, namely

n=n
y E an xn (85)
n=O

The adjustable parameters a. are the same as those for the quadratic

polynomial

a1 : s =slope at x =0
(86)

kdxd ) 0

a2 : k = rate of change of curvature at x =1

k 1 d 3y\ (87)

The boundary conditions 8. are the same as those for the quadratic

polynomial

81: x =O, y= 0

82: x= 1, y =

dy (88)

83: x= 1, () 0
3 cix

84: x = 1, Cy 0
dx

Since there are six conditions in all, n = 5.
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Substitution of ai and 8. into the polynomial produces

aI: a1 = s

a2: 6 a3 + 24 a4 + 60 a=KI

$I: a0 = 0

(89)

82: a0 + a1 + a 2 + a 3 + a 4 + a =1

83: a 1 + 2 a2 + 3 a3 + 4 a4 + a= 0

84: 2 a2 + 6 a3 + 12 a4 + 20 as - 0

"v is a linear function of s and kl, or

y = s S[x] + 1i KlfX] + Q[x] (90)

The analysis proceeds as before, and the results are shown in Table 5

and Figures 11 and 12.

CUSPED ENDS

Th. urdinary polynomial is utilized

n=n n
= a x (91)
n=O n

The adjustable parameters ai are the same as those for the quadratic

pol ynormia 1

a1 : k =curvature at x =0

k d 2y(92)
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TABLE 5 - SUMMARY OF ORDINARY POLYNOMIALS FOR POINTED END

Polynomial Equation:

y = s S[x] + kl K1 [x + Q[x] 0 < x < I

where

S[x] = x (x- 1)4

123KlEx] ý=- x (x- 1)

Q[x] - 1 - (x - 1)4 (4 x + 1)

Envelope Equations:

Zero Cnndition:

5  JS = x 3 x2  10x+10) 6 (x3  5 x2 + 10 x - 10)

(X - 1) 4' (X -1)

Unity Condition:

S =3x +2 ; 6 (x- 1)2

x x

Maximum or Mii;mum Condition:

30 x2
30 Y. 2( 12 (x - 1),2';

10 x - 5x+1 1 6x24x+l 4 1

Inflection-Point Condition:

S 5 (6 x2  4 x + 1); 60 (x - 1)2

10 x2 - 10 x + 3 10 xz - 10'x + 3
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10 90 30 40 E DO 70 80 90 100
ii

Figure 11 - Ordinary rPolynomial: Pointed End,

Permissible Range of' Payamwters s and k

0.7_

S~TW UEFLECTIcE POINTS*

$ NO INFLECTION POINTS

_ _ _I" _ I _ _ _ _. 0.3_ _

ONE INFLECTIOI POINT l . .

0
4 8 12 16 20 24 28 3, 36 40

Figure 12 - Ordinary Polynomial: Pointed End, Inflection..Point Condition
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k = rate of change of curvature at x = 1

/ 3y 
(93)

1 dx /

The boundary conditions 8. are the same as those for the quadratic

polynomial

8I: x = 0, y = 0

x 0ý-L 0
82: x O =dx

B3: x= 1, y 1 (94)

2

dx

Since there are seven conditions in all, n = 6.

Substitution of a. and 8. into the polynomial produces

a1 : 2 a 2 =k°

a 2: 6 a3 + 24 a4 + 60 a5 + 120 a6 =k 1

81: a0  0

82: a= 0 (95)

3: a 0 + a + a2 + a3 + a4 + a +a 6 =

04: a1 2 2a 3 a3 + 4 a4 + a5 + 6 a = 0

as5: 2 a 2 + 6 a3 + 12 a4 + 20 a + 30 a6 = 0
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y is a linear function of k and k in

y = k° K0[X] + i kKl[x] + Qfx] (96)

The analysis proceeds as before and the results are shown in Table 6 and

Figures 13 and 14.

LEAST-SQUARES FIT

Given shapes either in graphical form or in analytical form may be

fitted to the polynomials of this report by a least-squares fit. If

2
Z =y

for quadratic polynomials, or

z=y

for square-root polynomials; then, in general

z = d D[x] + KI xl + Q[x] (97)

where d and D[x] refer to the appropriate type of shape. For example,

d = r, and D[x] = R[x] for the rounded nose.

In general, a least-squares fit requires that f1 (7 - z 2 dx

be minimized where zI[x] represents the body shape to be fitted. Conse-

quently, by differentiating with respect to the coefficients to be deter-

mined, there result two simultaneous equations

1D2 - 1- 011

df 0 D dx + 1 D K1 dx+fI DQdx-f 1  Ddx = 0 (98)
1 1 2 1 0 0 1

d0 D K1 dx + I f0 1 dx + f0 1 - 0 zI 11 dx = 0 (99)

The values of d and K are then determined by the Cramer rule. Values of

the indicated integrals for the various polynomials may be found in Table 7.
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TABLE 6 - SUMMARY OF ORDINARY POLYNOMIALS FOR CUSPED END

Polynomial Equation:

y = ko Ko[x) + il K1Ex] + Q[xJ 0 < x < 1

where

Ko[x] - 1 x 2 (x - 1) 4
12

K Jx] 6 x (x- 1)3

Q'[x] I - (x - I)4 (10 x2 + 4 x + 1)

Envelope Equations:

Zero Condition:

S6 x2 (2 x2-_6 x + 5) 12 (2 x3 - 9 x2 + 15 x- 10)
(x- 1)4 (x -1)3

Unity Condition:

ko =.6 (2 x2 + 2 x + 1) 12 f(c- 1)2 (2 x + 1)

Maximum or Minimum Condition:

kc 60 x2  - 120 (X - 1)2

5 x-_ A x+ 1 5 x2- 4 x+ 1

Inflection-Point Condition:

60 x2 (10 x 2 - 10 x + 3)

50 x4 - 80 x3 + 45 x2 - 10 x + 1

Ic = 120 (x - 0)2 (10 x2 -5 x + 1)
1 50x 4  80 x3 +45 x2 - 10 x + 1
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0 80 120
0 0 s 2 l 160 200 240 280

Figure 13 -Ordinary Polynomial: Cusped End,
Permissible Range of Parameters k 0and k1

060

iNFNETIOCTOINT

0 P 20 40T6 80o 100 E INF20 IO P140 1TS100

Figure 14.Odnr0olnma: C0e Ednlcin-on odto

O~38



-o_-

TABLE 7 - INTEGRATED VALUES FOR LEAST-SQUARES FIT

Polynomial 0 D dx 0K 1 dx D Qdx J 2 dx J K, Q dx

4 Rouded R41 14 1 43
Rounded R 495 1980 495 20,790 11,880

1 1 202 1 529
Pointed S ýw - w10

C eL 1 - 647 1 941
u 3,500,640 2,333,760 4,084,080 1,225,224 2,450, 448

Rounded R 39,911 947 278.7 1 13
101,376 2,661,120 1,138,368 9072 2160

1 1 7 1 43
Pointed S - 495 83,160 23,760

Cusped K 1 1 59 1 - 529
0uspd _ 25,740 123,552 30,030 432,432 720,720
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PRISMATIC COEFFICIENT

The fullness of a shape is given by the prismatic coefficient, which

is the ratio of the volume of the body to the volume of a prism having the

maximum cross-sectional area and the length of the body.

The prismatic coefficient C for the shapes of this report is then

Cp = y2 dx (100)

for bodies of revolution, and

Cp - 1 y dx (101)

for two-dimensional bodies.

For the polynomials of this report

1 10 D x+k 1 dK1fdx i
Cp = d f0 Ddx+k 1 f0 1 0 Q dx (102)

Consequently for bodies of revolution described by quadratic polynomials

rounded end

r kl 2

P 15 180 3: (103)

pointed end

2k
s 1 4

CP 105 420 +7 (104)

cusped end

k 2
C I0

2  1 4(1)
P 2520---- 29 (105)
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ard for two-dimensional bodies described by square-root polynomials

rounded end

C 7 l1 4 (106)P = 192 120 5 Y100)

pointed end

s 1 2 (107)
p 30 360 3

cusped end

ko kl

C o - 1 4(108)P 210 840 + 7

Lines of constant C are plotted in Figures 4, 6, 8, 10, 12, and 14.
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